Manufacturers use blanking to punch pieces in specific shapes from sheets or strips of raw material. The punched-out piece is called the “blank,” hence the term “blanking.” Blanking is most often performed with tools made from hardened steel or carbide, which work on metals like aluminum, carbon steel, stainless steel, and even plastic.
Blanking has many benefits, but manufacturers must take some considerations into account before embarking on a full course of metal blanking. Although this process is a quick and cost-effective way to produce a large number of identical pieces, these punched-out pieces may have burrs or cracks on the edges. However, these drawbacks can be avoided by using high-quality tools, and they can be corrected by post-processing the blanks.
Although blanking sounds simple, this basic option can accommodate many variations. A full overview continues below.
Benefits of Blanking
Machinery used for blanking ranges from simple punches and dies to sophisticated CNC machinery. Blanking equipment can quickly be configured to end product specifications, and the process itself takes little time per part as it involves simply feeding the primary metal stock continuously into the blanking machine.
Because of this, blanking can perform long production runs that require little or no changes to the machinery or base material. The straightforward process also allows you to construct materials to strict tolerances with little part-to-part variation, and technology has become so sophisticated that it can build multiple geometries using a single process.
Furthermore, because the primary metal stock can be reused, blanking can help manufacturing firms reduce their material waste. Due to these benefits, blanking is commonly used to mass produce components for industries such as aerospace and automobile manufacturing. It’s also used for high-volume fabrication of parts for common household appliances.
Differences Between Punching and Blanking
Punching and blanking are often confused with each other since both processes remove pieces from a base sheet of material. Adding to the confusion is the fact that the same terms, punch and die, are used in both operations.
A simple way to remember the difference between the two processes is to note that an alternate term for punching is piercing. Manufacturers sometimes refer to this process as piercing because the desired end product is the pierced sheet of metal, not the metal that’s been punched out of it.
As discussed above, the punched-out slugs created by are the end products of the process, and unused sheet metal is discarded or reused after the slugs have been obtained.
There are many other operations that follow, but differ from, the basic process. Some of these include:
Shearing
Slitting
Lancing
Trimming
Parting
Shaving
No matter the type of hole-punching process used, it will result in quality parts at tight tolerances.
Different Types of Blanking Methods
While the fundamentals of the blanking process are simple, they have many variations, which we describe below:
Compound Die Stamping
This type of blanking is used to precisely manufacture complex steel parts. In this process, workers or automated equipment feed a steel strip through the stamping machine, which punches out a blank every three seconds. This simple, precise, and fast technique enables firms to produce steel components in bulk.
Continuous Strip Blanking
As implied by the name, continuous strip blanking continuously feeds metal substrates through a machine. This allows punching machines to produce uniform end products around the clock, with each product having the same characteristics of those before and after it. This process is a great way to develop coins, bottle caps, and medallions.
Progressive Die Stamping
Progressive die stamping uses coiled strips of thin flat metal as its base material. In this process, progressive die machines sequentially stamp, trim, and bend workpieces to make the finished parts, which exit the machine in conjoined strips. After performing this task, the machine separates individual parts from the strip, which results in the creation of several identical parts.
Square Sheared Blanking
Square sheared blanking is a fine process that uses specialized clamping tools to produce square-edged and contoured blanks. This process is a great way to create panels, casings, and any other component that requires a uniform square shape.
Cutoff
This process combines metal cutting and metal blanking procedures to create highly specialized blanks. When cutoff blanking, manufacturers blank metal sheets and then cut the metal at the sheets, allowing the production of long, flat pieces.
Metalworkers use carbon steel to make industrial equipment and household tools like knives because of this material’s exceptional strength and hardness. Carbon steel’s hardness varies depending on the amount of carbon present within it, and the higher the carbon content, the harder the alloy is.
Carbon content in carbon steel ranges from 0.8% to 2.11%, and the typical value is about 1.5%. Carbon steel is more cost effective than other materials of comparable hardness, thus making it a popular raw material to use as a substrate.
Stainless Steel
Stainless steel has low carbon content but a large amount of chromium, which ranges from 10% to 30% of the final material. This chromium content makes stainless steel highly resistant to corrosion and heat.
Stainless steel may also incorporate other metals like aluminum, copper, and titanium to enhance various attributes, and even nonmetals like phosphorous and sulfur can be used to improve resistance to certain types of corrosive substances. Stainless steel is thus a versatile alloy that can take on a variety of uses depending on its composition.
Aluminum
Aluminum’s softness and flexibility make it very suitable. In fact, aluminum is the most common metal used to create industrial and household products because of this material’s low cost, ease of extraction, and properties like lightness, durability, and recycling potential.
For these reasons, many applications in the automotive, aerospace, energy, and packaging industries use aluminum in large quantities. Aluminum is a very cost-effective way to produce high volumes of components.
Quality Metal Blanking from Ohio Valley Manufacturing
Ohio Valley Manufacturing offers precision blanking services for clients from all industries. We accommodate all types of orders, from prototyping to low- and high-volume production runs. We’ve been in business for over 20 years and are adept at meeting the unique needs of our customers.
Contact us today for all your custom blanking requirements.
Sheet metal sees use in a variety of industries and applications globally. In the automotive and aerospace industries, it oftentimes comprises automobile bodies and airplane wings; the medical sector depends on it for operating and examination tables; construction professionals use it day in and day out to constructive massive components that become a part of buildings.
Simply put, the term “sheet metal” can be used to refer to any piece of metal that’s formed into flat pieces. These pieces can vary in thickness but are typically thin and pliable while maintaining strength and structural integrity. This strength sets them apart from thinner, ductile materials such as foils.
In the United States, sheet metal thickness is measured by gauge. This is in contrast to much of the rest of the world, where millimeters are frequently used. Gauge measurements are non-linear. Sheet metal gauge measurements work backward when compared to traditional measurements—the higher the gauge number, the thinner the metal.
The gauge measurement originated during the industrial revolution and is determined by a number of factors. Gauge factors in a metal’s weight and the number of draws that were performed on it. Each drawing reduces diameter, which is why more drawings equal a higher gauge equals a thinner sheet.
Common Metals Used for Heavy Gauge Stamping
Heavy gauge stamping is a specialized term used to refer to metal stamping that uses a raw material possessing an above average thickness. The heavy gauge stamping process requires a stamping press that offers higher tonnage than traditional machines.
The process of stamping thin metals has become a science in itself. Tests have been created for the purpose of determining factors such as formability and mechanical properties. Dealing with thick metals, however, is still a niche undertaking. Experienced manufacturers know that selecting the proper materials, presses, and lubricant can often be a job-by-job task.
Heavy metal stamping is an essential part of the manufacturing process for countless industries. Sectors that require large, thick components and parts specifically benefit from the capabilities offered by thicker metal and the specialized machinery that produces it. Trucking and railroad equipment, power distribution components, and items for the defense industries all rely heavily on heavy gauge stamping to ensure structural integrity.
Several metals see frequent use for heavy gauge stamping. These include:
Hot Rolled Carbon Steel
Aluminum
Stainless steel
Brass
Copper
Fine silver
Gold-filled
Pewter
Solid gold
Sterling silver
Heavy Gauge Stamping at Ohio Valley Manufacturing
At Ohio Valley Manufacturing, we specialize in heavy gauge stamping for a host of industries, from automotive to trucking to agricultural and military applications. We have the tools and skills to make your projects a reality. Our capabilities include a 4000-ton press rating with a 24″ maximum stroke and our beds can handle materials anywhere from 0.020″ to 0.625″ thick (.5 mm to 16 mm)
Our facilities are designed to meet a broad range of stamping, welding, and other metal fabrication needs. From circle blanks and formed stampings, Ohio Valley Manufacturing supports our clients through the entire manufacturing process.
Call us today or request a quote if you’re interested in learning more about the heavy gauge stamping services that Ohio Valley Manufacturing has to offer. Our friendly and knowledgeable staff will work with you as a team to create unique, innovative solutions to fit your individual application.
Robotic welding requires little to no human oversight, boosting the efficiency, accuracy, and safety of the welding process. Using this technique, specially programmed robots both hold the workpiece in place and perform the weld in either partially or fully automated processes.
This differs from machine-assisted, or manual welding, which relies on worker oversight and drives up labor costs and the risk of error. Robotic welding has existed in some form in the U.S. since the 1960s, but it has improved in leaps and bounds over the past few years.
What Are The Advantages of Robotic Welding?
Robotic welding offers faster and more efficient welding processes as its technology improves. Robotic welding achieves highly accurate and repeatable designs and operates with higher throughputs than manual welding. This results in increased profit margins compared with manual welding.
Seven Types of Robotic Welding
Robotic arc welding creates electric arcs between welding units and metal reacts, heating both sides to their melting points. After this, the metal parts cool and form together, resulting in a strong metallic bond. This process benefits applications that require high accuracy and repeatability, such as car manufacturing.
Robotic resistance welding joins metal pieces using an electric current. This current creates high levels of heat, causing a pool of molten metal to form between the two pieces. As the pool cools, the pieces join together. Due to this process’s simplicity, resistance welding is highly economical.
Robotic spot welding works similarly to resistance welding, except it operates on thinner pieces that resist electric currents. Automotive manufacturers commonly use spot welding to join sheet metal frames on cars.
Robotic TIG welding uses tungsten electrodes to create arcs between welding units and resists. Because tungsten can’t be consumed, this welding process creates high-quality welds and is the most precise form of welding.
Robotic MIG welding uses continuously fed welding wires to create quick, efficient welds. This process works best for simple welds, and it’s one of the speediest welding techniques.
Robotic laser welding creates highly accurate welds using supercharged light particles. This technique benefits applications that rely on highly intricate detailing, including automotive branding, jewelry making, and medical instrument manufacturing. It also performs welds in hard-to-reach places that more traditional welding techniques can’t reach.
Robotic plasma welding feeds ionized gas through a copper nozzle to produce high temperatures, and it also allows operators to easily control and modify weld temperature and velocity. These attributes make it ideal for building electronics.
Ohio Valley Manufacturing’s Robotic Welding Services
Ohio Valley Manufacturing leads the field robotic welding. We follow ISO 9001:2015 safety standards and are TS compliant, which means you can rest easy knowing our robots are safely and efficiently serving you.
Specializing in designing, engineering, assembling, troubleshooting, and developing prototypes, Ohio Valley Manufacturing is your one-stop shop for robotic welding solutions. For more information on how robotic welding can save you money, increase your output, and improve your product quality, contact our sales representatives today.
Posted by Ohio Valley Manufacturing on | Comments Off on Will You Join US on Oct. 7th to Celebrate Manufacturing Day?
Have you heard about Manufacturing Day? Like other causes that have a day or month to spread their message, manufacturing also has a dedicated day. Manufacturing Day is always held on the first Friday in October—this year it is October 7th.
Manufacturing Day is a nationwide celebration of modern manufacturing. It is a day for manufacturers and companies of all sizes and types to invite the community in to see how todays manufacturing industry operates. This year there are over 1,700 events planned in all parts of the country.
So, what happens on Manufacturing Day? Participating companies, in a coordinated effort, open up thier facilities to the community—students, educators, parents, neighbors—to dispel myths about manufacturing. Many people still believe that manufacturing is dirty and requires no skill. In reality, modern manufacturing consists of high-tech machinery and equipment, computers, robotics, and skilled employees to run it all. Tours, demos, job and education fairs, and community events are just some of the activities included in the manufacturing celebration.
The goal of these events is to connect with future generations, to inspire young people that a career in manufacturing is a good one, and to safeguard the ongoing prosperity of the industry. It is a day we all enjoy as we amaze both kids and adults with our production capabilities.
What we do is important and a day that helps us bring a positive manufacturing message to the public is a day worth celebrating.
Since the industrial revolution manufacturers have been finding ways to improve their operations. Take, for example, the assembly line. It was an innovative process to work smarter. It is the same for automation—working smarter allows a manufacturer to offer more to their customers. More automation is entering the market making it easier for companies of any size to take advantage of it.
Although some may see automation’s role in replacing workers with machines as a problem, we haven’t found that to be the case. In fact, the increase in business we have experienced since automating has caused us to hire more people to handle the jobs that machines will never be able to do. By letting the machines do the rote production work, our staff is able to build relationships with customers and expand our design services. In this way we are able to work closely with each customer to ensure that designed parts meet their exact needs. As our design services have expanded, we have been able to grow as a supplier to manufacturers in the automobile, truck, appliance, recreational vehicle, agriculture, suspension parts, and lawn and garden industry.
It is tough for manufacturers to meet the demands of these industries. But, the move into automation made it possible to increase our capacity to meet their needs. With the right equipment, and the experienced team behind it, Ohio Valley consistently produces accurate, high-quality parts every day, for every customer, at a competitive price. We pride ourselves on our ability to work with each customer to get them an outstanding design and a finished product that exceeds their expectations.
As a trusted and reliable source for heavy gauge stamping and precision blanking services, we have formed long-lasting relationships through a very diverse customer base. The customers we serve require the highest-quality parts for demanding applications. Our phenomenal growth over the last 15 years can be directly related to the continuous improvements of our operations. Automation and computerized technologies have allowed us to build our reputation in the industry as one of the top Tier 2 suppliers in the country. As we continue expanding and increasing our capacity even further, we are able to add Tier 1 suppliers to our customer base.
There is no need to fear the machines. Modern technology is making it easier to add, improve, and expand capabilities that keep American manufacturers competitive in the global marketplace. Here at Ohio Valley we understand the benefits of manufacturing automation and have embraced them. The precision we attain and the quality of the parts we produce could not be produced through manual operations.
As we continue to look toward the future of the industry we will maintain the goals we consistently work to achieve—meeting the needs of every customer through the highest quality and customer service. Contact us today to see how Ohio Valley can meet your needs.
Posted by Ohio Valley Manufacturing on | Comments Off on Finding the Right Fuel to Power American Industry
At Ohio Valley, like many businesses, we like to keep tabs on the issues that affect our industry interests. One issue in particular affects an interesting cross-section of industries that we’re involved in, and so we’d like to address it here: the ethanol debate.
A concern for both the farming and transportation industries, the ethanol fuel debate has many on edge, especially as a result of the EPA’s November call for a cut in ethanol requirements for gasoline in 2014. The basic idea is this: in an attempt to cut down on greenhouse gas emissions, corn-based biofuel known as ethanol can be blended into fuel that will burn properly in most motors produced since 2001. There are different “blend levels” known as E15 (15% ethanol) and the more ambitious, but less widespread E85 (85% ethanol). Since ethanol and traditional fuel burn differently, the transition from one source to the other would be gradual by necessity, with the interim requiring motors that are capable of burning fuels of different blends equally as well.
The tension comes from farmers who benefit by producing more corn, and big oil, which benefits from producing more oil. Some think the solution is to promote the E85 option more aggressively, others advocate for offering both fuels and allowing the consumers to dictate demand. Whatever the outcome for refiners and farmers, the fuel sources for our nation will likely continue to be debated – and not just between ethanol and oil. Other renewable options like hydrogen, solar, and electricity are all being explored to various degrees of success, perhaps most notably by companies like Tesla, whose electric cars are gaining popularity.
Whatever the energy future, we’re sure farming and transportation needs will continue to endure, and we’ll be here to provide quality manufacturing services for farming and transportation vehicles alike, no matter what fuel source they use to get around.
One of the biggest buzzwords currently in the motor vehicle manufacturing industry is “lightweighting”. This refers to the attempt by auto and truck design and manufacturing companies to come up with the lightest weight vehicles possible, in order to be as fuel efficient as possible. There are many schools of thought as to the best approach for lighter vehicles – in the auto industry, many companies are substituting aluminum, carbon fiber, and other composites to try to save weight and maintain durability. Designers are scrutinizing every piece of the vehicles, from the frame to the engine, for new and innovative ways to make lighter parts but still provide the same loadbearing and safety capabilities as heavier vehicles.
For the trucking industry, alternate materials aren’t as much an option because of the need to bear higher loads, at higher tolerances. This means that many are using higher grade steels, with higher tensile strength – but at thinner gauges. Stronger steel, however, is tougher to manipulate. The higher grade the steel, the more pounds of force need to be behind the machine that makes the part, and many designs call for steel that is stretching the boundaries of what many manufacturers are capable of. Fortunately for us at Ohio Valley, our specialty is in heavy gauge stamping, and our 4000 ton press can handle what most others can’t.
As designs call for stronger steel gauges, and the lightweighting trend continues, Ohio Valley Manufacturing will be ready to accommodate our customers with their heavy gauge stamping needs. Make sure to check back here at our blog for more insight into how this trend is affecting the agricultural and construction industries, or in the meantime, feel free to share your thoughts and get in touch with us on social media.
At Ohio Valley manufacturing, we are constantly on the lookout for new ways to innovate, optimize, and streamline our business and our customer service. Back in 2011, we implemented one of our greatest strategies to accomplishing these goals, and we’d like to take some time to explain just how valuable it is for our business and our customers.
The previous problem was this: all of our business functions and transactions, including shipping, receiving, inventory, production, job scheduling, maintenance scheduling, and more were tracked and sorted separately. The time and resources spent managing all of these various processes and schedules was an area we chose to focus on streamlining.
Enter PRAXIS, our proprietary software that is a powerful tracking and reporting database and workflow package. It encompasses both MRP functions for inventory control, and ERP functions for streamlined flow of information between departments, and easy resource and production tracking. PRAXIS was designed in-house, which means that not only are we experts at its use, but it is also entirely customizable. PRAXIS is fully integrated with all of our machines, and provides real-time traceability for all of our processes, and also tracks AQP reporting, die reviews, and EDI processing. It offers our customers the option for barcode labeling and shipment notifications via text, email, or ASN, and offers Ohio Valley a solid advantage over our competition. With a central database from which to monitor all of our internal processes, and that capability to customize and grow with our business, PRAXIS is one of our prouder achievements, and another demonstration of how we seek to build our business in a way that helps us streamline our process so we can streamline our service.
Posted by Ohio Valley Manufacturing on | Comments Off on Rising to the Challenge: Ohio’s Economic Recovery
As the U.S. economy slowly recovers from the Great Recession, the workforce has its eye continually on the unemployment rate, job opportunities, and trends in hiring and job opening in order to reestablish the stability lost in the past decade. Job seekers and students of the economy alike might be impressed with the economic performance and trajectory of Northeast Ohio in these times. According to one recent study, despite the slower predictions in the national recovery, Ohio is expected not only to recover the jobs lost in the Recession in 5 years, but potentially experience a labor shortage over the next decade or so, as a result of retirement, newly created jobs, and turnover.
Manufacturing will be right near the top of this activity, right behind the robust medical industry, with high employment projections, and turnover rates. A portion of these manufacturing jobs will be the result of a technical workforce approaching retiring age, opening up technical jobs to a new generation of skilled employees. Part of the burden we at OVM share with other manufacturers is attracting and creating these technically skilled workers, as we’ve blogged about before. This period of turnover will be crucial to continued success of one of Ohio’s economic backbones, manufacturing and production.
As we continue to watch and participate in our region and our country’s recovery, we’ll be sure to keep an eye on our progress, and note with pride when Ohio helps to lead the way forward.
Posted by Ohio Valley Manufacturing on | Comments Off on The Structure of Safety in American Manufacturing
American manufacturing has been a regular part of the news cycle lately for many reasons: the several proposed “manufacturing renaissances” and other similar terms that are thrown about in conjunction with the automation and high tech manufacturing, the observed re-shoring trend, immigration considerations, trade considerations, and many other reasons. Since June was National Safety Month, we thought it might be an appropriate time to talk about one other great advantage American manufacturing has that has also been recently thrown into perspective: labor and wage safety.
In light of the recent factory collapse in Bangladesh, and the rising wages for Chinese workers, we have an opportunity to appreciate anew the virtues of the manufacturing climate in the U.S, where conditions are regulated and livable wages are secure. While standards inspections, ISO surveillance audits and the like might be routine to the point of dull in the U.S., their necessity is often outweighed by their apparent inconvenience – but global issues like these throw us back into a proper perspective.
Safety is a critical part of the manufacturing world. Employee health and wellness ought to be highly and proactively sought after by manufacturers, as a point of pride, and not simple necessity. This is why we at OVM implement a robust safety training programs for our employees. Our classes include drug training, haz-comm, personal protective equipment, confined space training, hearing conservation, electrical safety practices, and lockout/tagout procedures. Additionally, we have further training for safe operation of all of our power presses, and a course in power industrial truck training. This training ensures our employees’ comfort with each skilled operation they perform, which ensures that they have the knowledge and experience necessary for ISO and other quality surveillance audits.
Safety is imperative for employee wellness, and safety training ensures that each employee has both the knowledge to do the job safely, and the comfort do it efficiently – which in turn is good for the health of the business. This cycle of safety and efficiency is the continuous upward trajectory that we at OVM are glad exists in our nation, and are committed to pursue and promote.